Redundant Postsynaptic Functions of SynCAMs 1–3 during Synapse Formation
نویسندگان
چکیده
Investigating the roles of synaptogenic adhesion molecules during synapse formation has proven challenging, often due to compensatory functions between additional family members. The synaptic cell adhesion molecules 1-3 (SynCAM1-3) are expressed both pre- and postsynaptically, share highly homologous domains and are synaptogenic when ectopically presented to neurons; yet their endogenous functions during synaptogenesis are unclear. Here we report that SynCAM1-3 are functionally redundant and collectively necessary for synapse formation in cultured hippocampal neurons. Only triple knockdown (KD) of SynCAM1-3 using highly efficient, chained artificial microRNAs (amiRNAs) reduced synapse density and increased synapse area. Electrophysiological recordings of quantal release events supported an increase in synapse size caused by SynCAM1-3 depletion. Furthermore, a combinatorial, mosaic lentiviral approach comparing wild type (WT) and SynCAM1-3 KD neurons in the same culture demonstrate that SynCAM1-3 set synapse number and size through postsynaptic mechanisms. The results demonstrate that the redundancy between SynCAM1-3 has concealed their synaptogenic function at the postsynaptic terminal.
منابع مشابه
SynCAMs organize synapses through heterophilic adhesion.
Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglob...
متن کاملThe SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts.
Synaptic cell adhesion molecules (SynCAMs) are crucial for synapse formation and plasticity. However, we have previously demonstrated that SynCAMs are also required during earlier stages of neural circuit formation because SynCAM1 and SynCAM2 (also known as CADM1 and CADM2, respectively) are important for the guidance of post-crossing commissural axons. In contrast to the exclusively homophilic...
متن کاملNeuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic alpha- and beta-neurexins. To test this hypothesis, we examined the functional effects of neuroligin-1 mutations that impair only alpha-neurexin binding, block both alpha- and beta-neurexin binding, or abolish neuroligin-1 dimerization. A...
متن کاملInvestigating the Roles of Cell Adhesion Molecules in Synapse Formation and Function
iii Recent findings have revealed a crucial contribution of the adhesion molecule neuroligin-1 to the precise organization and regulation of intercellular synaptic connections within the central nervous system, and disruption of neuroligin-1 signaling in vivo fosters cognitive abnormalities. Despite considerable recent progress, several uncertainties remain regarding the exact synaptic function...
متن کاملSynapse formation between isolated axons requires presynaptic soma and redistribution of postsynaptic AChRs.
The involvement of neuronal protein synthetic machinery and extrinsic trophic factors during synapse formation is poorly understood. Here we determine the roles of these processes by reconstructing synapses between the axons severed from identified Lymnaea neurons in cell culture, either in the presence or absence of trophic factors. We demonstrate that, although synapses are maintained between...
متن کامل